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PART I

BENDING OF THICK BEAMS OF BIMODULUS MATERIALS

A.D. Tran
Exxon Production Research

Houston, Texas

and

C.W. Bert
University of Oklahoma

Norman, Oklahoma

Abstract -'The literature on bending of beams made of bimodulus materials

(which have one value of the elastic modulus in tension and another in com-

pression) is limited. All of the works known to the present investigators

are restricted to beams with natural boundary conditions and subjected to

specific distributions of normal pressure only. In the present work, the

transfer-matrix approach is used to determine the small-deflection static

behavior of bimodulus beams, including transverse shear deformation. The

neutral surface, i.e., the locus of points having zero axial normal strain,

may vary linearly within each element. The effects of axial load and non-

natural boundary conditions are considered. As a basis for comparative evalua-

tion, exact closed-form solutions are also presented for special cases in which

the neutral-surface location is constant along the beam axis. Results are

compared between the two solution methods and are found to give good agreement. 1

INTRODUCTION

As early as 1864, St. Venant (l] recognized that certain actual materials

have different elastic behavior when they are loaded in tension as compared

to compression. See also (2-4]. However, the concept of a bimodulus material,
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i.e., a bilinear material having different moduli in tension and in compression

was not originated until 1941 hy Timoshenko [3], who considered the flexural

stresses in such a material undergoing pure bending. The effective modulus

for stiffness of such a beam in pure bending was given by Marin [3]. The

bimodulus concept was rediscovered and extended to two-dimensional materials

by Ambartsumyan (61 in 1965. Subsequently, there have been many analyses of

two-dimensional bimodulus material, but this topic is beyond the scope of

the present work.

Work analogous to that of Timoshenko (3] or Matin [5] on static, small-

deflection bending of Bernoulli-Euler beams of homogeneous, bimodulus mate-

rial was presented in [7-15]. A so-called no-tension material, which has no

resistance to tension but a finite elastic resistance to compression, is a

special case of bimodulus material applicable to brittle materials, such as

many ceramic materials. Buckling of columns of no-tension material was ana-

lyzed in [16-18]. Column buckling of general bimodulus material was con-

sidered in [19,201. Large static deflections of beams of bimodulus material

were treated in (21,221. Transverse shear effects on bimodulus beams were

first treated by Kamiya [23]. Bimodulus action in viscoelastic beams was

considered by Nachlinger and Leininger [24].

Special studies applicable to bending of specific kinds of nonhomogeneous-

material beams were carried out by some investigators. For example, Vierling

and Scheele [251 were concerned with cord-rubber, Bilida £261 and Phan-Thien

£271 with fiber composites, Carlsson et al. [281 with paperboard, Swift [29]

with reinforced concrete, and £30-33] with laminates.

The present work is believed to be the first, in the context of bimodulus

beams, in the following respects:
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1. Consideration of complicated and concentrated loadings, the

latter causing the neutral-surface location (and thus the beam

stiffnesses) to change along the length of the beam.

2. Application of the transfer-matrix method.

GOVERNING EQUATIONS FOR SMALL DEFLECTIONS OF A BIMODULUS

BEAM ACCOUNTING FOR TRANSVERSE SHEAR

Consider a beam of thickness h and length Z. The origin of a Cartesian

coordinate system is located on the central axis with the z-axis being normal

to the central axis (see Fig. 1). The stress resultants and stress moment,

each per unit width, are defined as:

(NQ) =h/2 (a, TxZ)dz ; M / zx dz (1)

-h/2 -h/2

where ax and T are respectively the axial normal stress and the transverse

shear stress. The theory developed by Yang, Norris, and Stavsky [34) assumes

the following displacement field:

U(x,z) = u(x) + z*(x) ; W(x,z) = w(x) (2)

where U and W are the displacement components in the x and z directions,

respectively, u and w are the corresponding displacements at the midplane,

and . is the bending slope,

The constitutive relation for a bimodulus beam with provision for a

shift of the neutral surface (due to different properties in tension and

compression) can be written as follows [35]:

Ls Di1)lxf I(

Q = S(wx + 10x
V
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Here, differentiation is denoted by a comma, i.e., ( ),x d( )/dx. The

symbols A, B, D,Sdenote the respective extensional, flexural-extensional

coupling, flexural, and thickness shear stiffnesses defined by

h/2 h/2

(A,B,D) = { Q(k)(lzz2)dz ; S K2  G G(kldz (k t,c) (4)
-h/2 -h/2

The quantity K2 is a shear correction coefficient which is generally taken

to be 5/6 for static loading of rectangular-section beams;Q(k) is E(k) for a
bemo (k) - (k) (k)(k

compact-section beam or E)/(I- V12k11 k1 for a wide, thin beam; G(k)

is the longitudinal-transverse shear modulus; and k = t for tensile-strain

regions or k = c for compressive-strain regions.

One can write the equations of equilibrium as follows:

N,x  o ; Q'x qx) ; M x - Q = o (5)

Here, q(x) is the transverse distributed loading.

Substituting eqns (3) into eqns (5), we obtain the following equations

of equilibrium in terms of generalized displacements

(Au,x + Bp,x, =0

[S(w'x + P)]' : - q(x) (6)

(Bu,x + Dp, x), - S(w x + ) 0

The expression for neutral-surface location [361, zn, can be written as:

ex = U, +z Znx: 0

or

zn = - U,x/p, (7)

.x
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ANALYSIS: CLASSICAL APPROACH

For cases when the neutral-surface locations are constant along the

beam axis (x-direction), eqns (6) become

Au, + 0, 0Axx + xx:0

A(w, + ,x = -q(x) (8)
xx

Bu, +D, -S(w, + 0) = 0Bxx 'xx

Eqns (8) constitute a sixth-order system of linear ordinary differential

equations with constant coefficients. The general solution can be written

as [37]:

u(x) = d, + d2x + 3Bcx 2  u
A ~ Up

+ T -X +Aup

t(x) = -c2 + 6(32 -AD) c - 2c3x - 3cx 2 + p (9)

w(x) = c1 + c2x + c3x
2 + c4x

3 + W

where cl, c2, c3, c4 are arbitrary constants and u P p, Wp are particular

solutions. The arbitrary constants are determined by the boundary conditions

of the beam at x = 0 and x = Z.

The clamped boundary conditions at x = 0 and x = Z are given as

u(O) = u() 0 ; (o) = -(Z) = ; w(O) = w(Z) 0 (10)

The clamped boundary conditions at x = 0 and free boundary conditions

at x = Z are given as

u(O) = N(Z) = 0 ; i(0) = M(Z) = 0 ; w(O) = Q(Z) 0 (11)

The values of constants cl, cZ, c3, c4 , dj, d2 for the clamped-clamped and

clamped-free boundary conditions are as follows:



For clamped-clamped conditions, the values are:

P• i WpO) ; c : 6 (B 2 " AD)
C (0 2 SA C4 + p (0)

SA 2

C4 = ESAz .- 12(/- AD) p (O) + 'P P) - [w p(0) - w p()]

(12)

c3 = 2 p - (0) - 3C? I di = -U(0)

d2 = 71 U (0) - u (4) - 1 c 4
Zp p A

For clamped-free conditions, the values are:

c ( -Wp(0) ; di  u p(0) ; c2 = -W px(Z) -p(z) - p(O)

C4 S(z A D ) [c2 - ()]

d2 Bz -lA  B2U p() - BD Opx(Z) + SBZ[W (Z) + 'p (Z)] (13)

+ ADu P (t&) + BDII (VXW+ Dp,x(Z + p,x(}

C3= 2(Bz AD) f-ABu~ ( ) - AD)PIx (Z) + ASZ[wpx(Z) + P(i)]

+ ABu (Z) + Blp '(Z)}

The particular solutions for uniform and sinusoidal normal load are as

follows:

For uniform normal load q(x) = q0 the particular solutions are

Sq 0 3q 0  Aq 0 2)X
up(X) (B0 x3  _(X) =- Aqo xxp p S x 6(AD-B) (14)

Aqo

Fp W AD - q B i

For normal load q(x) q q0sin aix, the particular solutions are
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U czAq- 8) COS ax

Aqo
p - (A co (15)

p

Up( = (AO-B z) sn

Aqo

(x) = A0 sin ax (16)
p a CAD -B z)I

qo A(X) :_ [+ a2 (AD _- B z) ] osx

ANALYSIS: TRANSFER-MATRIX APPROACH

A common type of system occurring in engineering practice consists of

a number of elements linked together end to end in the form of a chain.

Well-known examples are continuous beams, turbine-generator shafts, etc.

The transfer-matrix approach is ideally suited to such systems because only

successive matrix multiplications are necessary to fit the elements together.

In the transfer-matrix techniques [38,39], the beam is divided into Ns

elements of mass m and each mass m is assumed to be concentrated at the mass

center of the element. The locations of these point masses are referred to

as stations. Consecutive stations are separated by massless fields which

contain all of the stiffnesses of the system. Consequently, the model of

the beam shown in Fig. 2 consists of two half fields, -2/2, one at each end

of the beam, and N. stations separated by Ns -1 full fields of length, 4NZ,

where It Z/Ns and Z is the total length of the beam. The transfer matrix

. ... . .. .... . . ... ',
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transfers the displacements (u,w,*) and the forces (M,Q,N) from the left

side of the field or station to the right side of the same field or station.

Figure 3 shows the flexural configuration of the ith station. From

continuity and static equilibrium considerations of Fig. 3, the following

conditions are derived:

R L =1i 1

w i w Q I Qi - q  (7

R L R NL

i = N i i

The above equations can be written in matrix notation as follows:

R L
u 1 0 0 0 0 0 0 u

w 0 1 0 0 0 0 0 w

00 1 0 0 a 0

Q 0 0 0 0 0 0 qs Q

N 0 0 0 0 0 1 0 N

1 0 0 0 0 0 0 1 l1

i i

Matrix eqn (18) can be written in more compact notation as

R = LTsls (19)
1 S I

where the definitions of each term can be ascertained easily by direct

comparison between eqns (18) and (19). The matrix [Ts] is known as the

station matrix.

Figure 4 illustrates the flexural configuration for the ith massless

4./
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beam element (field). Here, RS]R (station 0 = [S] (field i) and [S]R

(field i) = [SIL. l (station i+l). From equilibrium considerations the
following expressions are evident:

NL NR L R • ML  MR + QR - K (20)
+I i ; i+l i q i+l i m

where*

Kq = q( )dZ Km : zq( )dz (21)
0 0

Eqns (3) can be inverted to become:

x Bz AD [ ]{} (22)

w x  (Q/s)-

From eqn (22), one can write the following equations by taking the averages

of the respective moments and axial forces at both ends of the field:

B(ML + MR )  L +NR
Ll R+AZ i-l D(N 1 +Ui+ i 2 2 (23)

A(M L + MR) B(NL~ + NR
L R i+l 1 N~l )

mi+l i Y 2 2

where y -= B, - AD.

Making use of eqns (20), on, can write equations (23) as:

L u R + (yZ)R + iB(AZ)]QR (BAZ)K
u141  u Y -.-)M1-i- 2Y m (24)

L R _ R _ [A(AZ)2]QR + BAZ),R +A2e)
+l i " - i (-) + (- )Km

Similarly, eqns (22), (20), and (23), can be combined to yield the following:

Values for K and K for several different loading conditions are listed in
Table 1. q m

-------------------------------------
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W+l w+ [l-+ A(a) ]QR + [A _ )]MR -1(t E(Z]R (5
w ~ y i 2y i 2y Ni

(25)

R A AZ)K + at Kq(at) - [ 2y Km 2SKq

In matrix notation, eqns (20), (24), and (25) become

L BaZ -aZ -Bat R
u 1 00 y 2Y y 2y m

w 0 0 _AZ A (aZ) [at+A) Z3 -B(aZ)2 -A(AZ)2 K Z KS 4y 2y 4y m'T q

0 0 1 -AAZ -A(aZ) 2  B_ A2Km
y 2yY 2Y m

: 0 0 0 1 0 -K Mm

Q0 0 0 0 1 0 -K qQq

N0 0 0 0 0 1 0 N

l 0 0 0 0 0 0 1 1

(26)

which can also be written as

S] L + T ]IS] R (27)

The matrix [T.] is known as the field matrix.

The station and field matrices, eqns (19) and (27), can be used to give

the relationship of the state vectors at the two ends of the beam by system-

atically applying the matrices to each station and field as follows:

Nil

[SIN+l : [t]/ 2 [Ts] T {T] s  Ti [T]I2IS ]  (28)
i
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where ,\,Z-/2 is the length of each of the half fields at the ends of the beam

and Z is the length of each of the whole fields. Eqn (28) can be written

in compact form as

[S]N+ 1 = [R][S] (29)

Given the boundary conditions, eqn (29) can be solved for the state vectors

at the ends, which are [S] and [S] N+l; see Appendix C of [401.
0s

Finally, the rest of the state vectors are calculated as follows:

IS]1 :[Tj] T/2 S]o

S] = [TslTj]zi/2ES]o

IS] L [TI[Ts][TI [S]

(30)

[SIN s [T s]. [T s][Tj]_,i/2[Sl a

where the superscripts L and R refer to the left and right sides of the

station, respectively.

Values of beam stiffnesses A, B, 0, S are needed in order to solve the

governing equations. However, for bimodulus beams, neutral-surface positions

are required for the computation of A, 8, D, S. Study of the expression for

neutral-surface position in eqn (7) indicates that, except for a few special

cases when neutral-surface positions are known constants, the governing

equations must be solved before we can compute neutral-surface positions.

Our approach is first to assume a set of neutral-surface positions
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along the beam length, then solve the governing equations for displacements

u, w, p , and the derivatives u,x and 'Dx* With known values of u,x and 'x)

compute neutral-surface positions using eqn (7). If the assumed and computed

set of neutral-surface positions are in close agreement, the problem is

solved. Otherwise, assume a different set of neutral-surface positions and

repeat the calculations.

NUMERICAL RESULTS

Numerical results were obtained to verify the validity of application of

the transfer-matrix technique to bimodulus-beam problems and to study the

behavior of beams made of aramid-cord rubber (a bimodulus material). Unless

stated to the contrary, the material properties and beam dimensions listed

in Table 2 are employed in all of the problems considered, which are summarized

in Table 3. Values of the constants used in Table 3 are as follows:

M = M, = 0.1 lb-in. ; F= 1.0 lb ; qo= = 0.lb/in.

The transfer-matrix model of the beam includes twenty-five elements,

each of length 0.32 in. A value of 5/6 was used for the shear correction.

coefficient, K2. All of the computations were carried out on an IBM 370

Model 158J computer.

Response of an aramid-cord rubber beam subjected to various loadings is

investigated in Cases 1 through 8. Bending moment M, shear force Q, axial

force N, and the corresponding displacements including axial elongation

(contraction) u, transverse deflection w, bending slope -, together with

neutral-surface positions zn, are computed. Results are presented in Tables

4 through 11 for Cases 1 through 8, respectively.
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The boundary conditions of Cases 1 through 4 are fairly simple. We

have been able to develop both closed-form and transfer-matrix solutions

for these cases. The good agreement between closed-form and transfer-matrix

results can be seen in Tables 5 through 8. For the majority of the results,

the error is less than 2%, although for a few result values which are close

to zero, the percentage error can go up to 5%. Actually, accuracy of the

transfer-matrix results can be improved by increasing the number of elements

into which the beam is divided. The number of elements used in this study

is twenty-five which is judged sufficient to give reasonably good results.

Support of the judgment is shown in Fig. 5.

Behavior of clamped-free bimodulus beams subjected to uniformly distri-

buted and sinusoidally distributed loads is investigated in Cases 1 and 2.

Behavior of bimodulus beams which are also subjected to uniformly distributed

and sinusoidally distributed loads but with clamped-clamped boundaries is

investigated in Cases 3 and 4. The case of simply-supported boundaries and

sinusoidal load can also be solved in closed form for a beam. However, this

condition is not discussed here because it is a special one-dimensional case

of the plate problem investigated in [36]. For all four Cases 1 through 4,

the axial force N is zero. Neutral-surface positions zn are either constant

throughout or piecewise constant. Values of zn for Cases 1, 2, and 3 are

-0.2672, 0.2672, and 0.2672 in., respectively. The value of zn for Case 4

is 0.2672 in. when 0<x< /2 and is -0.2672 in. when z/2 < x < Z. Actually,

zero axial force always leads to constant or piecewise constant neutral-

surface position; this can be shown using eqn (B.3) from Appendix B and

setting N = 0 and M # 0:

zn B/A = constant (31)

ilL ~..
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Constant or piecewise-constant neutral-surface position greatly reduces the

difficulty in development of closed-form solutions for eqns (6), because

eqns (6) can then be reduced to a much simpler form, eqns (8).

If a practicing engineer does not have any access to the technique of

analyzing bimodulus structural elements as presented here, the simplest

thing he would do is to treat the bimodulus beam as an ordinary beam with

Young's modulus taken to be the arithmetic average of the tensile and com-

pressive Young's moduli of the bimodulus material. The question of how good

is this approach then arises; the answer is presented in Figs. 6 and 7. The

distribution of maximum tensile and maximum compressive normal stresses at

the outermost layer of the beam subjected to the condition of Cases 1 and 2

are presented for both approaches in Figs. 6 and 7. In a similar fashion,

deflections are compared in Fig. 8. As shown in Figs. 6 and 7, the average-

modulus approach results in a maximum normal stress which is approximately 10'

of the actual maximum stress (resulting from the bimodulus approach) for both

Cases 1 and 2. Figure 8 shows that a maximum deflection approximately 10% of

the actual deflection (based on the bimodulus approach) also results from the

average-modulus approach. In short, design based on the average-modulus

approach would likely lead to premature failure of the structural elements.

The technique developed in this work therefore would be valuable to design

engineers.

To compare the results of both the transfer-matrix analysis and finite-

element analysis with the closed-form solution, Figs. 9 and 10 are presented

for Case 3. The finite-element results were provided by Dr. J.N. Reddy [41]

and were obtained as a special case of a bimodulus plate [421. There were

twenty-two elements along the length of the beam. Even for the exaggerated



scale used in these figures, it was not possible to show a difference between

the transfer-matrix (TM) and closed-form (CF) solutions. The finite-element

values were generally smaller than the CF and TM values, except for bending

moment, for which all three methods agreed very closely. It was not possible

to compare the computation times involved, since the results were run on

different machines. However, in the past, it has been the general experience

that the TM technique is more efficient (431.

Since closed-form solutions are not available for the complicated

boundary conditions considered in Cases 5 through 8, only transfer-matrix

results are presented for these cases. The effect of concentrated moment,

axial force, and transverse force applied at the free boundary on static

behavior of a clamped-free bimodulus beam are investigated for two distributions

of loading (uniform and sinusoidal) in Cases 5 and 6. the effect of concentra-

ted moments applied at both boundaries on static behavior of a bimodulus

beam subjected to the boundary condition of hinged-hinged with axial constraint

are investigated for uniformly distributed and sinusoidal loads in Cases 7 and

8. As shown in Tables 8 through 11, the axial forces IN induced by the con-

centrated moment and forces at the boundaries are constant but not zero; and

neutral-surface positions z r vary drastically along the beam length. In fact

a look at eqn (B.3) tells us that if axial force N is nonzero, one would expect

Z n generally not to be constant. Although for beams made of ordinary (not

bimodulus) material, the neutral surface always coincides with the geometric

midplane, the neutral surface for a bimodulus beam is not only far different

from the midplane but also assumes various shapes depending on the conditions

of boundaries and loadings. Shapes of neutral surfaces for Cases 5 through 8

are illustrated in Fig. 11 through 14.
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CONCLUDING REMARKS

In this study, the transfer-matrix model of a bimodulus beam was

developed based on shear-deformable-beam theory. Transfer-matrix results

were compared with and were in close agreement with closed-form solutions

developed herein for all four combinations of uniformly distributed and

sinusoidally distributed load with clamped-clamped and clamped-free

boundary conditions.

Although closed-form solutions are available only for a number of

simple boundary conditions, the transfer-matrix model offers a solution

method for a wide variety of boundary and loading conditions. Utilizing

the model, behavior of a bimodulus beam was investigated by computing

and observing deflections and neutral-surface positions under fairly com-

plicated conditions of loading and boundary. It was found that concentrated

forces and moments applied at the boundaries have significant influence on

neutral-surface positions; more specifically they can cause the neutral-

surface positions (thus stiffnesses) to change drastically along the beam

length. As illustrations, plots of neutral-surface positions were presented

for some of the investigated cases. Numerical results of displacements and

stress distributions were also presented.

A distinguishing feature of the model developed in this work is numer-

ical efficiency. It requires much less computer storage than the variational

finite-element method. Also, in a comparison to an exact closed-form solu-

tion presented here, the transfer-matrix results were more accurate than the

variational finite-element results.

....k A1L. . . . . " m . . . . .. ( i .. .. .. * -"
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APPENDIX A. EFFECT OF NEUTRAL-SURFACE LOCATION ON THE BEAM STIFFNESSES

It is mathematically convenient in the solution of eqns (6) to reduce

these equations to an algebraic form not including the integral forms of the

A, B, D, and S. Therefore, the expansion of these terms into their form in

terms of the two Young's moduli Ek and two shear rigidities Gk is completed in

the following manner.

Refer to Fig. A.l for a typical stress distribution for the case of the

neutral-surface location greater than zero; where zn , the neutral-surface

location, is measured positively downward from the geometric midplane. The

top of the beam is considered to be -h/2 and the bottom of the beam is h/2.

The beam stiffnesses are defined as follows:

A -h/2 Ekdz  h/2 E Z dz
.)

rh/2 T 2h/2
D C Ekz 2dz S -h/2 Gkdz

-h/2
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where Ek and Gk are the Young's moduli and shear moduli respectively.

Superscript k can be either t or c, which represent tension or compression

properties respectively.

Convex Downward Bending

In convex downward bending, the top layer of a beam is in compression

and the bottom layer in tension.

The first of eqns (A.l) can be expanded in the following form:

Zn E/2 Etdz = [Zn + (h/2)]Ec + [(h/2) - ZnjEt

J Eiz{n-

-h/2 zn

or

A = (h/2)(Ec + Et) + (EC - Et)zn (A.2)

In similar form, the second of eqns (A.1) can be expanded to:
z nh/2 c tc dz Ec 2 h2  Et h2

o : =-2 Ez dz +j Etzdz* 2 (z n  T )  2 1 4-- zn
-h/2 Zn

or

B = (h2/8)(Ec - Et) + (l/2 )(Ec - Et )z (A.3)

Also

zn  h/2 h3  3

D = EC z 2dz +  Etz2dz = (1/3)(zn + T)E c + (1/3)(L - )Et

-h/2 
Zn

or

(h3/24)(Ec + Et) + (l/3 )(Ec - Et)zn (A.4)

and

zn h/2

S f GCdz + 1 Gtdz : = n + (h/2)]Gc + [(h/2) - ]Gt

-h/2 Zn n

ftL
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or

S = (h/2)(G c + Gt) + (Gc - Gt)zn (A.5)

Concave Downward Bending

In concave downward bending, the top layer of beam is in tension and

the bottom layer in compression.

The first of eqns (A.1) can be expanded in the following form:
zn  h12

A f n Etdz + f ECdz Et[zn + (h/2)] + Ec[(h/2) - zn]

-h/2 Zn

or

A = (h/2)(E c + E t ) - Zn (EC - E ) (A.6)

With a similar approach, the second of eqns (A.l) can be expanded to:

z n h/2 t C 2
B= Etz dz + E z dz = I n

-h/2 Zn d (z ) + T (T - Zn)

or

B (h /8)(Ec - Et) - (I/2)(Ec Et)z n  (A.7)

Also

zn h/2 Et (z3 + T ) + z zD f Etzdz + Z EcZ2dz:T -

-h/2 
n

or

D (h3/24)(Ec + Et) (I/3 )(Ec Et)z3 (A.8)

and
Zn h/2

= f Gtdz + h/ Gcdz = Gt(z + t) + GC( - zn)

-h/2 
Zn

or

S - (h/2)(Gc + Gt) - (Gc - Gt)zn (A.9
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APPENDIX B. METHOD OF COMPUTING NEUTRAL-SURFACE LOCATION FROM MOMENT

DIAGRAM AND AXIAL FORCE

Under certain combinations of loading and boundary conditions, the

neutral-surface location varies drastically along the beam length (x-axis).

Closed-form solutions currently exist only for cases in which the neutral-

surface location is constant along the beam length. However, the transfer-

matrix technique can be utilized to analyze cases of varying neutral-surface

location. Evidently some benchmark is needed to verify the latter technique's

application to bimodulus problems. It is a fairly simple task to derive the

moment diagram from boundary conditions and applied axial force. Results of this

method have then been checked against those of transfer-matrix analysis;

good agreement was obtained.

The constitutive relation for a bimodulus beam with provision for a shift

of neutral-surface location (due to different properties in tension and com-

pression) has been written in eqn (22) as follows:

u, A [D ]lN (B.1)

From the kinematics of deformation, the neutral-surface location has

been derived and expressed in eqn (7) as follows:

zn - ul 'x (B.2)

Replacing u, and '., by the expressions in eqn (B.1), one can rewrite eqn

(8.2) as

z = (BM - ON)/(AM - BN) (B.3)

n6_"
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Study of eqns (A.2)- (A.4) and (A.6)- (A.8) indicates that the

expressions for stiffnesses A, B, D can be written as
2 .

A = a + azzn ; B b. + b2z n D = d + d~z (B.4)

where for concave bending

al = (h/2)(Eo + Et) ; a2 = Ec - Et

b, = -(hZ/8)(Ec - Et) ; b, : (I/2)(E c 
- Et) (B.5.a)

dI = (h
3/24)(Ec + Et) d (I/3 )(Ec - Et)

and for convex bending

a = (h/2)(Ec + Et) ; a - (Ec - Et)1 2

b, = (h2/8)(E c - Et) ; b2  - (I/2 )(Ec- Et)  (B.5.b)

d, = (h3/24)(E + Et) ; d2 = - (I/3)(E c 
- Et)

Replacing stiffnesses A, B, 0 by the expression in eqns (B.4), one can write

eqn (B.3) as

Mz (a - b  + a z -b ( z 3(b -d z )+b z -djN (B.6)
n22 z 1n I n 22z n

Once moment M and axial force N are known, eqn (B.6) can be solved for zn.

h/2

.ie e

'Fig. 1 Cartesian coordinate system for beam.
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~ REGION IN COMPRESSION

EI REGION IN TENSION

Fig. 11. Neutral-surface shape of an aramid-cord
rubber beam (Case 5).

Fig. 12. Neutral-surface shape of an aramid-cord
rubber beam (Case 6).

Fig. 13. Neutral-surface shape of an aramid-cord

rubber beam (Case 7).



34

REGION IN COMPRESSION

REGION IN TENSION

al

Fig. 14. Neutral-surface shape of an aramid-cord
rubber beam (Case 8).

k/a E C 6

Fig. A-1 Typical stress distribution for a bimodulus

beam with neutral-surface position greater

than zero.
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Table 1. Values of Km and Kq for various loading conditions

Loading condition
(on the whole beam) m q_,

Uniform load

q(x) = q0  q0(Ai)
2/2 qoaZY

Sine load q [ q

q(x) qo sin T x n( x- cos Txj
0 z- n7 n cos

(sin n j - sin x Cos -- xl)Lxj

Cosine load qo n qZ

q(x) = q Cos x 1-,, (cos n, x -p (sin0- Ti xjr n in x

Cos am xj.)-Z sin fl x 11 - sin 2 Xj-1)

Table 2. Pertinent elastic and physical properties [361 and geometric para-

meters for aramid-cord rubber beam

Properties and Units Tension Compression

Longitudinal Young's modulus, psi 5.193 x 105 1.740 x 103

Longitudinal-thickness shear modulus, psi 5.366 x 102 5.366 x 102

Density, lbf/in 3  0.037 0.037

Beam length 8 in.

Beam depth (thickness) 0.6 in.

.. . L 'i
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Table 3. Summary of all problem cases considered

Case Boundary conditions Spatial distribution Time variation of

No. of distributed load distributed load

STATIC

X0 X=z

CLAMPED-FREE UNIFORMLY DISTRIBUTED

q.,qo sinaxI I

2 qSTATIC
CLAPE-FEE x=o x=Z

CLAMPED-FREE SINUSOIDAL (a= 2 7/)

q=qs

4 STATIC

CLAMPED-CLAMPED x=o x=z

WITH AXIAL CONSTRAIN! UNIFORMLY DISTRIBUTED

q=q sin ax

STATIC
CLAMPED-CLAMPED x=o x=Z

WITH AXIAL CONSTRAINI SINUSOIDAL (a=27./z)

CLAMPED-FREE WITH
MOMENT AND FORCES x=o x=Z
APPLIED AT THE FREE UNIFORMLY DISTRIBUTED

END
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Table 3. (continued)

Case Boundary conditions Spatial distribution Time variation of
No. I of distributed load distributed load

M@ . q a q0 sinax

6TFI STATIC

CLAMPED-FREE WITH

MOMENT AND FORCES x=o x=Z
APPLIED AT THE FREE SINUSOIDAL (a=27/)
END

M M
(o q qo

7 STATIC
HINGED-HINGED WITH
MOMENTS APPLIED AT Tx=
BOTH ENDS AND AXIAL UNIFORMLY DISTRIBUTED

CONSTRAINT j
HINGED-HINGED WITH STATIC

MOMENTS APPLIED AT x=o x=z
BOTH ENOS AND AXIAL SINUSOIDAL (a=27/i)
CONSTRAINT

mom4
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PART II

TRANSIENT RESPONSE OF A THICK BEAM

OF BIMODULAR MATERIAL

C.W. Bert
School of Aerospace, Mechanical and Nuclear Engineering

The University of Oklahoma
Norman, Oklahoma, U.S.A.

and

A.D. Tran
Exxon Production Research
Houston, Texas, U.S.A.

SUMMARY

Certain materials have different elastic behavior when they are loaded in

tension as compared to compression. As an engineering approximation, they

are usually modeled as a bimodular material, i.e., a bilinear material

having different Young's moduli in tension and in compression. All of

the previous analyses of bimodular beams known to the present investigators

have been concerned with either static loading or harmonic vibration. Thus,

the present work is believed to be the first to consider transient response

of such beams. The transfer-matrix method is used to discretize spatially,

while the timewise discretization is accomplished by use of the Newmark

beta method.
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INTRODUCTION

There is an extensive body of literature on the static behavior of

bimodular beams, going back as far as Timoshenko in 1941.' These works

were recently discussed in connection with a transfer-matrix static analysis

2of bimodular beams by the present investigators. Examples of material

having such behavior are cord-rubber, soft biological tissues, paperboard,

and reinforced concrete.

The only dynamic analyses of bimodular beams known to the present

investigators are the works of Khachatryan 3 in 1967, Galoyan and Khachatryan4

in 1978, and Tran s in 1981. All of these involved either free or sinuso-

idally forced vibrations.

The present work uses the transfer-matrix methodD, which was shown in

Ref. 2 to be both more accurate and computationally more efficient than the

finite-element method for a staticly loaded bimodular beam. The neutral-

surface position, which is the boundary between the tensile and compres-

sive regions of a cross section is permitted to vary in a piecewise linear

fashion along the beam length. The beam is modeled as a Timoshenko beam,

i.e.; both transverse shear deformation and rotatory inertia are considered.

Numerous approaches have been used to handle transient response prob-

lems; these have included various transform techniques , the so-called

direct-analysis method 8, the modal method 9 , and various numerical-integration

schemes. Among the latter are the central-difference method 1 , the Houbolt

method 11 the Newmark beta method12, the Wilson theta method 13, and stiffly

stable methods.1z For simplicity and efficiency, the present analysis uses

the Newmark method.
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GOVERNING EQUATIONS

A relatively thick rectangular-section beam of thickness h and length

z is considered to be undergoing small-displacement motion. The x axis

is located on the beam midplane and the z axis is directed downward normal

to x.

The Timoshenko-beam-theory displacement field, as follows, is used:

U(x,z,t) = u(x,t) + zP(x,t) (1)
W(x,z,t) = w(x,t)

Here, U and W are the displacement components in the respective x and z

directions, u and w are the corresponding midplane displacements, t is time,

and p is the bending slope.

The axial and transverse stress resultants N and Q and stress couple

M, each per unit width, are defined as

fh/2 xh/2
(N,Q) : (a T )dz ; z dz (2)

fh/2 x' 
J-h/2

where a x and Txz are respectively the axial normal stress and the trans-

verse shear stress.

Due to the bimodular action (different properties in tension and

compression), bending-stretching coupling is induced in a straight beam

of bimodular material even when it undergoes small deflections. Thus,

the appropriate constitutive relation is reminiscent of that for a beam

unsy nnetrically laminated of ordinary (not bimodular) materials :

IN I L[A B]if~u/;x
1M J 0 jlP/ x (3)

Q SCP + (Iw/ax)]
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The symbols A, B, D, and S denote the respective stretching, bending-

stretching coupling, bending, and transverse shear stiffnesses, all per

unit width, defined by

(ABD) h/2 Q(k)(l,zz2)dz S K2 f G dz (4)
-h/2 "-h/2

2
Here, G is the shear modulus in the xz plane; K is the shear correction
coefficient; Q(k) is E k) for a compact-section beam or E k) - vx k)V

for a wide beam; and k= t for tensile-strain regions and k= c for

compressive regions.

The equations of motion appropriate for the subject beam are

aN ;2 U
ax a

S;_ p 2w (5)
ax at" q(x,t)

3M Q = I zam -Q
ax=3

Here, q(x,t) is the transverse distributed loading and P,I denote the

respective transverse translatory and rotatory inertia coefficients per

unit length: rh/ 2
(P,I) = h/2 (1,z ) dz (6)

I)I)=j~1
where p is the material density.

Equations (3) and (5) can be combined to obtain the following

"displacement equations of motion":

_ (A 1. + B 2k) = P

[S(- w + p)] P =- q(x,t) (7)

I x aw

(B 3- + 0 1k )  - + I

Tx )x ;x ;
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As demonstrated in Appendix A, in bimodular beams, the beam stiff-

nesses A, B, and 0 depend upon the neutral-surface position zn, which is

defined by setting the axial normal strain equal to zero:

=au + Z --b = 0
x ax n x

Thus,

Z - ax (8)

TRANSFER-MATRIX FORMULATION

As a result of the present investigators' recent success in obtaining

very accurate results for staticly loaded, highly bimodular beams by using

the transfer-matrix method 2, it was decided to use this spatial-discretization

approach here. Briefly, the beam is divided into a number (N ) of mass

elements, each of which is assumed to have all of its mass concentrated at

its mass center, the location of which is called a station. Consecutive

stations are separated by massless fields containing all of the stiffnesses

present in the system. Consequently, the complete beam is discretized to

consist of two half fields (.iz/2), one at each end of the beam, and N5

stations separated by Ns - 1 full fields of length . The role of the

transfer matrix, which will be presented subsequently, is to transfer the

generalized displacements (u,w,) and the generalized forces (N,Q,M) from

the left side of the field or station to the right side of the same field

or station. For completeness, the field matrix for the present problem is

given in Appendix B.

Following Chu and Pilkey9 , we use the Newmark acceleration and

velocity relations in the following form

2Yn+l Yn+l Y n yn/at 1a_ Z-:--T . [-77 + s , f_ ( -)TE
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3Y n + l  = y n + ( 2 y 2 Y +
+ (l- )Ata 2yn 2Yl

at - __ +1- A)t + A~t - ~ (9;,
at at a t

Here, y denotes each of u, w, and , ; B and x are coefficients; .t

is the time increment and the subscript (n+l) denotes conditions at a

time (n+?)at with n= 0, 1, 2, ... As recommended in Ref. 9, we choose

= /2 and B > 1/4.

Consideration of continuity at station i at time (n+l)At enables one

to write

(Yn+1)i (Yn)L (Y = u,w,,) (10)

After applying equations (9) to the time derivatives, one can write

equations (7) in finite-difference form for station i at time (n+l)at as

(un+I )L  (Un), aun L
n R )L - i +I((N ~ . N + P(

1 1 1

a2u L
n

L j
(Wn+ 1)L (Wn)L, L

(Qn+l)R: (Qn+l) + f 1 w)) + awt -

3'-w n)L

L L

(M 7~ R (M L (n+ j). ('Pn) - 3w nf )L

[ - ,2  L_

(M n+l i ( M n + l ) i + I 871t at aBT -t-)

+ (- - 1). n
2s

mom
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I

Equations (10) and (11) can be written in matrix notation as

Un+ 1 1 0 0 0 0 0 0 Un+L

Wn+ l  0 1 0 0 0 0 0 Wn+ 1

ln+l 0 0 1 0 0 0 0 n+l

M n+ 0 0 I/S(At)z 1 0 0 -IX2  Mn+ l  (12)

n+l 0 P/(at)2 0 0 1 0 -PX3 Qn+l

n+1 0 0 0 0 0 0 -P(x1+x2) Nn+l

1 0 0 0 0 0 0 1

where L

(n n L

( )1 3w L a I 2( L

Fat) ,It at 1=t(3
i i|

NUMERICAL RESULTS

Since no solution, analytical or numerical, is available for trans-

ient response of bimodular beams, the present transfer-matrix model could

be checked only by comparison with results obtained for an ordinary-

material beam. The comparison is made with a modal solution presented

in Ref. 9. The material properties and dimensions of the beam are listed

in Table I and the loading and boundary conditions are those of Case 1

in Table II. The tip-deflection response for 1-millisec time increments

is shown in Figure 1. As can be seen, the agreement is close, thus

serving as a benchmark validating the accuracy of the present transfer-

matrix model as applied to transient analysis of beams.

• iI
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The material and beam geometry selected for the bimodular problems

investigated here were the same as those used in Ref. 2; see Table III.

It is noted that this material is highly bimodular in nature, since

Et/E c z 300.

Transient response of a clamped-clamped bimodular beam with axial

constraint is investigated for loadings having different time functions

and different spatial distributions. Load which is a step in time is

investigated in Case 2 for uniform spatial distribution and in Case 3 for

cosinusoidal spatial distribution. Load which is a ramp function in

time is investigated in Cases 4 and 5 for uniform and cosinusoidal dis-

tribution. Maximum-deflection response with time for the above mentioned

cases are illustrated in Figures 2 through 7. In all of these cases,

oscillation keeps continuing without reducing amplitude, since the model

developed in this study does not incorporate structural damping. However,

the present model is still of value to designers since the predicted

results are on the conservative side.

CONCLUDING REMARKS

In this study, a transfer-matrix model, based on Timoshenko-beam

theory, was developed for a bimodular beam and applied to transient

response problems. Since no transient response analyses of this type of

beam by other methods of solution are presently available, it was not

possible to make comparisons. However, for the case of a beam of ordinary

material subjected to a triangular pulse, results obtained by the oresent

method agreed well with those obtained by the modal method.



54

ACKNOWLEDGMENTS

The research reported here is based on a portion of the second

author's thesis submitted in partial fulfillment of the requirements for

the M.S. degree in Mechanical Engineering at the University of Oklahoma,

May 1981. The authors acknowledge the University's Merrick Computing

Center for providing computing time. The first author acknowledges the

financial support of the Office of Naval Research, Structural Mechanical

Program.

REFERENCES

1. S. Timoshenko, Strength of MateriaZls, Part II: Advanced Theory and

Problems, 2nd edn., Van Nostrand, Princeton, NJ, 1941, pp. 362-369.

2. A.D. Tran and C.W. Bert, 'Bending of thick beams of bimodulus

materials', unpublished manuscript, 198T.

3. A.A. Khachatryan, 'Longitudinal vibrations of prismatic bars made of

different-modulus materials,' Mechanics of SoLiids 2(5), 94-97 (1967).

4. A.G. Galoyan and A.A. Khachatryan, 'On transversal vibration of beams

made from different modulus material' (in Russian), 3okiKad Akadenria

Nauk Aryanskoi SSR 6 6 , 22-26 (1978). See Applied Mechanics Reiews

32, Rev. 10552 (1979).

5. A.D. Tran, 'Static and dynamic behavior of bimodulus beams,' unpublished

M.S. thesis, Mechanical Engineering, The University of Oklahoma,

Norman, OK, 1981.

6. F.A. Leckie and E. Pestel, 'Transfer matrix fundamentals,' "r t a

Journal. of Mechanical Sciences 2, 137-167 (1960).

7. L.Y. Bahar, 'The use of integral transforms in the prediction of

dynamic response,' Shock and 7ibration Digest 5(9), 2-7 (1973).



55

8. H.A. Koenig and N. Davids, 'Dynamical finite element analysis for

elastic waves in beams and plates,' 1nternat-ionaZ JournaZ of SoZis

and Strctures 4, 643-660 (1968).

9. F.H. Chu and W.D. Pilkey, 'Transient analysis of structural members

by the CSDT Riccati transfer matrix method, Oo muters and Stitctures

10, 500-611 (1979).

10. J.W. Leech, P.T. Hsu, and E.W. Mach, 'Stability of a finite-difference

method for solving matrix equations,' AIAA Journal 3, 2172-2173 (1965).

11. J.C. Houbolt, 'A recurrence matrix solution for the dynamic response

of elastic aircraft,' Journal of the Aeronautical Sciences 17, 540-

550 (1950).

12. N.M. Newmark, 'A method of computation for structural dynamics,' ASCE

journal of the Engineeri'ng Mechanics ivision 85(EM3), 67-94 (1959).

13. E.L. Wilson, 'A computer program for the dynamic stress analysis of

underground structures,' SESM Report 68-1, Department of Civil

Engineering, University of California, Berkeley, 1968.

14. P.S. Jensen, 'Stiffly stable methods for undamped second order

equations of motion,' S-LM Jour a for ,elumerical Anaysis 13, 549-563

(1976).

15. Y.R. Kan and Y.M. Ito, 'Shear deformation in heterogeneous anisotropic

plates,' Journal of Composite Materi'als 6, 316-319 (1972).



56

APPENDIX A: COMPUTATION OF BEAM STIFFNESSES FOR A BIMODULAR BEAM

The beam cross section is assumed to be compact and rectangular,

extending from z = -h/2 to z = h/2. Since E(k ) depends upon the sign of

the axial strain, beam stiffnesses A, B, and D depend upon the neutral-

surface position zn , thus the first three of equations (4) must be

integrated piecewise. For example, for concave upward bending

(32w/3x2 < 0) the top portion of the cross section (from -h/2 to z n) is

nnin. compression and the bottom portion (from Zn to h/2) is in tension.

Thus, the first of equations (4) becomes
Z ~ h/ 2

r~n E Et n]t

Ec dz + f dz = zn + (h/2)]Ec + [(h/2) -zn

-h/2 z

or

A = (h/2)(E t + Ec) - Zn(Et-Ec)

In similar fashion

B = [(h2/8) - (Zn2/2)](Et - Ec)

0 = (h3/24)(Et+Ec) - (Zn3/3)(Et - Ec)

In the case of convex upward bending (;2w/;x 2 > 0), the results are:

A = (h/2)(Et+ Ec) + Zn(Et Ec)

B = -[(h2/8) - (z n2/2)](E -E c )

t 3 t c
D = (h3/24)(Et+Ec) + (Zn /3)(Et-E c )

nb
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APPENDIX B: FIELD MATRIX FOR A THICK BEAM OF BIMODULAR MATERIAL

The following matrix equation was derived in Ref. 2:

U L 1 0 0 Bz _ 2 -DA -BA__ K u R
y 2y y 2y m

w 0 1 -Az A(AZ)2  cAi+A(AZ)3 , -B(Az) 2  -A(Az) 2 c - K w
2y S 4yJ 2y 4y m 2Sq

0 1 -AA2 -A(Az)2  BA2. A_Ky 2y y 2yK m

M = 0 0 1 AZ 0 -K Mm

0 0 0 0 1 0 -Kq Q

N 0 00 0 0 1 0 N

L + 0 0 0 0 0011
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* T.M. SOLUTION

0.20 - MODAL SOLUTION

0.10
0,10

0.05W

at :;r t 0 ,

-0.05
-0.10/

-0.20

2 4 6 8 10 12 14 1Q 18 20

3
t x Io (sec)

Figure 1. Comparison between transfer-matrix and modal solutions
for a beam made of ordinary material and subjected to
transient load (Case 1). Note: 1 in. 2.54 cm.

. . .. _ '_ ,- ,_ -. • .... . . i
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Table I. Material properties and beam dimensions
for ordinary-material check problem

Value

Property or Dimension Sr units English units

Material Properties:

Young's modulus 207 GPa 30 x 100 psi

Shear modulus 79.6 GPa 11.5 x 106 psi

Specific gravity 8.20 8.20

Beam Dimensions:

Length 183 cm 72.0 in.

Depth 58.7 cm 23.1 in.

Table II. Boundary conditions and spatial and temporal
variations in loading considered

q -- qC g

xto t t

CLAMPED-FREE UNIFORMLY DISTRIBUTED TR.I;NGULAR PULSE

q q 0 q

x=o x=Z. t

CLAMPED-CLAMPE.D WItH UNIFORMLY DISTRIBUTED S7- FUNCTON
AXIAL CONSTRAINT

q = qo cosax

I Fr Li I ¢

3 [ t

CLAMPED-CLAMPED ITH COSINUSOIDAL (a=27/z) ST? F!JNCT7CN
AXIAL CCNST7AINT
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Table II. (continued)

Case Boundary conditions Spatial distribution Time variation of

No. - of distributed load distributed load

q =qo q0

4 qo

x=o x=Z t t
CLAMPED-CLAMPED WITH UNIFORMLY DISTRIBUTED
AXIAL CONSTRAINT

q =qo cosax q o

':: - r

x=o x=Z t4  t
CLAMPED-CLAMPED WITH COSINUSOIDAL (a=21/z)
AXIAL CONSTRAINT

, q qo qo
q10

6 xo xt 5  t
CLAMPED-CLAMPED WITH UNIFORMLY DISTRIBUTED RECTANGULAR PULSE
AXIAL RESTRAINT

q qo cos x qo

x=o x=Z t6 t
CLAMPED-CLAMPED WITH COSINUSOIDAL (a=2,7/z) RECTANGULAR PULSE
AXIAL RESTRAINT

!V

, . , . • : , , .
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Table II1. Material properties and beam dimensions
for aramid-cord rubber beam

Value

Property or Dimension SI units English units

Material Properties:

Longitudinal Young's modulus 3.58 GPa 519,300 psi
in tension

Longitudinal Young's modulus 12.0 MPa 1,740 psi
in compression

Longitudinal-thickness shear 3.70 MPa 537 psi
modulus (independent of
tension or compression)

Specific gravity 1.02 1.02

Beam Dimensions:

Length 20.3 cm 8.00 in.

Depth 1.52 cm 0.60 in.

4, - . - , - - -... -
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